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Abstract

This paper documents two methods of improving the performance of volume-to-point tree networks for two-
dimensional heat conduction. These improvements are o�ered relative to the design produced by the constructal
method, in which optimized volume elements (building blocks) are presented and grouped into larger constructs,

which are also optimized. The ®rst improvement is that each construct is optimized with respect to all its degrees of
freedom: unlike in the constructal method, the optimized features of the smaller building blocks are not preserved
during the optimization of the construct. The second improvement opportunity is that spacings are allowed between

the facing tips of neighboring high-conductivity inserts. All such spacings are optimized. Another new direction
pursued in this paper is the optimization of tree networks that must ®ll a volume with prescribed external shape
(e.g., square, or disk). The designs optimized numerically in this paper lower the volume-to-point resistance beyond
the levels achieved based on the constructal method, and bring the shape of the conduction tree closer to the shapes

seen in nature. # 1999 Elsevier Science Ltd. All rights reserved.

1. Constructal tree networks

A recent paper [1] described the problem of connect-

ing with minimum thermal resistance a ®nite-size

volume and a point-size heat sink. The volume gener-

ates heat at every point and has a relatively low ther-

mal conductivity, k0. Conduction is aided by

distributing a ®nite amount of high conductivity ma-

terial (kp) through the heat generating volume. It was

shown that the solution to this problemÐthe path of

least global resistanceÐcan be pursued in a sequence

of optimization and construction steps, which starts

from the smallest volume element and continues

toward larger volumes (assemblies, constructs).

Optimized at every step is the geometry of the system.

The volume-to-point heat ¯ow problem adds itself to a

larger class of geometric optimization problems that

have been identi®ed and solved recently in the active

®eld of electronics cooling (e.g., Refs. [2±6]).

A characteristic feature of each optimized building

block is the balance between conduction (or tempera-

ture drop) through the k0 medium and the kp inserts.

The visual manifestation of this balance is the optimal

shape of each building block. As the building blocks

coalesce into larger and larger assemblies, their high-

conductivity inserts reveal the shape of a tree with

thicker links near the root (heat sink). Every geometric

feature of this shape is the result of the same generat-

ing principle: the minimization of volume-to-point re-

sistance subject to volume and material constraints.

Since this shape is deterministic (not random), and

since it is constructed `from small to large', the opti-

mization principle was named constructal. The impli-

cations of this principle are great in physics and bi-

ology, because volume-to-point ¯ows dominate most

inanimate and animate ¯ow systems in nature. Some

of these applications are reviewed in Ref. [7].
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The work reported in the present paper improves
the constructal method in two signi®cant ways. First,

in the original formulation of the volume-to-point
problem [1] it was assumed that the optimal shapes
determined for one volume size (building block) are

preserved and used at the next level of assembly,
where a larger volume is covered with the optimized
building blocks. This assumption simpli®ed the opti-

mization of the assembly by reducing its number of
geometric degrees of freedom. No such assumption is
made in the present work: each volume size is opti-
mized with respect to all its degrees of freedom,

regardless of the complexity of the internal structure
that develops. We show that by giving the design more
degrees of freedom we can raise its performance to

levels higher than in Ref. [1].
The second improvement follows from allowing the

tip of each high-conductivity insert to be surrounded

by heat generating material. In the ®rst demonstration

of the constructal principle [1] it was assumed, for sim-
plicity, that each high-conductivity insert stretched all

the way across the volume element. When the elements
were assembled into constructs, the adiabatic tips of
the elemental inserts touched, and the resulting tree

network had the appearance of a grid. In the present
work this simplifying assumption is abandoned. By
allowing spacings between the tips, and by optimizing

these spacings we bring the performance of the con-
duction tree to higher levels. We also bring the image
of the optimized tree closer to the shape seen in natu-
ral ¯ow patterns.

2. Numerical formulation

Consider the two-dimensional conduction domain
shown in Fig. 1. The total area is ®xed (H0L0=A0),

but the shape H0/L0 may vary. The domain contains

Nomenclature

A area [m2]
Ap area covered by kp material [m2]
B length of kp blade [m]

D thickness of kp blade [m]
H height of conducting domain [m]
kp high thermal conductivity [W/m K]

k0 low thermal conductivity [W/m K]
kÄ conductivity ratio (km/k0)
L length of conducting domain [m]

n1 number of elements in the ®rst construct
n2 number of ®rst constructs in the second construct
q1 volumetric heat generation rate [W/m3]
S tip spacing [m]

T temperature [K]
x, y Cartesian coordinates [m]

Greek symbol

f volume fraction of kp material

Subscripts
m minimized once
min minimum

opt optimum
peak peak temperature, hot spot
th theoretical

0 elemental volume
1 ®rst construct, assembly
2 second construct, assembly

Superscript

0 dimensionless notation, Eqs. (3)
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two conducting materials. The low-conductivity ma-
terial (k0) ®lls most of the space and generates heat
uniformly at every point (q0 '). The high-conductivity

material (kp) is inserted as a blade of thickness D0 and
length B0. The purpose of this blade is to collect the
generated heat current, and to lead it out of the

volume through a patch (heat sink) located at x=L0

and y=0. The rest of the perimeter of the H0�L0 rec-
tangle is insulated.

The high-conductivity blade does not penetrate all
the way across the heat generating domain. There is a

spacing (S0=L0ÿB0) between its tip and the insulated
side of the domain. This spacing may vary.
Constrained is the amount of high-conductivity ma-

terial (Ap0=D0B0), which can be expressed as a frac-
tion of the overall size of the domain,

f0 �
Ap0

A0
� D0B0

H0L0
�constant� �1�

In the steady state, the domain develops a temperature
®eld that drives the generated current (q0'A0, constant)

Fig. 1. Elemental conduction system with spacing at the tip of the high-conductivity insert, and the double minimization of its

peak temperature.

M. Almogbel, A. Bejan / Int. J. Heat Mass Transfer 42 (1999) 3739±3756 3741



toward the point (L0, 0). The highest temperature
(Tpeak) is recorded in the two corners (0, 2H0/2) that

are situated the farthest from the heat sink. The objec-
tive of the numerical work was to minimize the highest
temperature through changes in the architecture of the

conducting system. This is equivalent to minimizing
the overall thermal resistance between the ®nite-size
volume and the point-size heat sink. There are two

geometric parameters (two degrees of freedom) in this
con®guration, namely, the overall shape (H0/L0), and
the shape of the high-conductivity pro®le (D0/B0). The

second degree of freedom can also be represented by
the tip spacing, for example, the ratio S0:H0.
The equation for steady state conduction through

the k0 material is

@ 2 ~T

@ ~x 2
� @

2 ~T

@ ~y 2
� 1

1ÿ f0

� 0 �2�

where the dimensionless variables are de®ned by

� ~x , ~y � � �x,y�
A1=2

0

~T � Tÿ T�L0,0�
q1A0=k0

�3�

The corresponding equation for steady state conduc-
tion in the kp material is

@ 2 ~T

@ ~x 2
� @

2 ~T

@ ~y 2
� 0 �4�

In this formulation, the dimensions of the rectangular
domain are � ~H 0, ~L 0� � �H0, L0�=A1=2

0 such that the

overall size constraint reads HÄ 0� LÄ0=1. The continu-
ity of heat ¯ux across the interface between the k0 and
kp materials,�
@ ~T

@ ~n

�
k0

� ~k

�
@ ~T

@ ~n

�
kP

�5�

reveals a second dimensionless parameter

~k � kp

k0
�6�

Parameters f0 and kÄ describe the internal composition
of the heterogeneous material that ®lls the elemental

volume. For example, the analytical solution reported
in Ref. [1] corresponds to the combined limit ~k �
fÿ10 � 1 in a con®guration like Fig. 1 but without spa-

cing at the tip of the kp blade (S0=0). Indeed, the
objective of the numerical work summarized in the
next section was to document the e�ect of ®nite f0

and kÄ values in the con®guration with ®nite spacing S,
and to evaluate the goodness of the ®nite-S design
relative to the S=0 design optimized in Ref. [1].

3. Optimal elemental geometry

The numerical work consisted of determining the
temperature ®eld T(xÄ, yÄ ) in a large number of con-

®gurations of the type shown in Fig. 1. The external
and internal shapes (H0/L0, D0/B0) were changed only
slightly from one con®guration to the next. The ma-

terial parameters kÄ and f0 were held ®xed during each
geometric optimization sequence. The calculated peak
temperature TÄpeak emerged as a function of the two

shape parameters.
It is a characteristic feature of the constructal

method that the optimization work, even when con-
ducted numerically, is not based on a black-box optim-
ization routine. The reason is that the elemental

con®guration (Fig. 1) is simple enough that we already
know (analytically in certain limits [1]) that it has only

one extremum. This is also clear from Fig. 1.
The bigger point is that we are making a deliberate

e�ort to perform the optimization explicitly, for one

degree of freedom at a time, by involving only one op-
timization principle: the maximization of thermal con-

ductance subject to constraints. We think that the
principle generates the architecture of the ¯ow system
(internal structure, external shape) [7]. We think that

thisÐthe principleÐis important with regard to natu-
ral ¯ow systems, because it empowers us with deter-
minism (theory) in understanding and predicting such

images.
The alternative, tried in the recent past, is to use a

black-box optimization code to vary randomly all the
possible geometric features of the ¯ow paths, and to
retain the changes that push the global volume-point

resistance lower (subject to ®xed volume and external
shape). This technique leads to tree-shaped pathsÐa
di�erent tree each time that the code is run, because

the search is random. The multitude of such near-opti-
mal solutions is why many extrema exist in the region

of minimum global resistance. This technique, how-
ever, is nondeterministic, which is why the tree image
has been waiting for a purely theoretical explanation,

in the same way that the round cross-section of the
bronchial tube or earthworm have been explained
based on resistance minimization [7].

In the present work, Eqs. (2) and (4) were solved
using a ®nite elements code (FE) [8]. The accuracy of

the FE code was tested against a ®nite di�erences code
(FD) based on the Cholesky back-substitution method
developed by ourselves and used extensively [9]. The

FE code was necessary for this geometric optimization
problem because we needed a reliable and ¯exible

solver capable of handling e�ciently very large
matrices. The grids were nonuniform in both x and y,
and their ®neness was tested from one geometric con-

®guration to the next. The grid was selected such that
the dimensionless temperature results were insensitive
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to further grid doubling in both directions. Speci®cally,

the grid was re®ned up to 104 nodes in some cases, to

ensure that the further doubling of the number of

nodes resulted in changes of less than 0.05% in the

hot-spot temperature. The average number of nodes

for all the simulations was 6000. Quadrilateral el-

ements with biquadratic interpolation functions were

used. Table 1 shows the close agreement between the

hot spot temperature (TÄ at x=0 and y=H0/2) calcu-

lated with the FE code and the corresponding values

determined with the FD code.

The lower part of Fig. 1 shows the optimization

path followed in each case (kÄ, f0). The peak tempera-

ture was ®rst minimized with respect to the external

shape, which is represented by the dimensionless height
of the elemental domain, HÄ 0 (note that H0=L0 � ~H

2

0).

In the second round, the shape of the kp insert was

optimized by locating the minimum of the envelope of

the curves shown in Fig. 1. In the end, every geometric

detail of the elemental con®guration (including the tip

spacing S0) was a result of the geometric minimization

of the overall resistance to volume-to-point heat ¯ow.

Table 2 is a summary of the optimal geometries

determined for ®ve cases in the range 30 R kÄ R 300

and 0.01 R f0 R 0.1. The pictorial presentation of the

same geometries is the object of Fig. 2. The external

slenderness ratio (H0/L0)opt increases as f0 and kÄ

decrease. The internal slenderness ratio (D0/B0)opt
decreases as f0 decreases, and increases as kÄ decreases.

The table also shows the twice minimized peak tem-

perature, where TÄmm0TÄpeak,min,min.The corresponding

theoretical results for the limit ~k � fÿ10 � 1 and
S0=0 are [1]�
H0

L0

�
opt,th

� 2� ~kf0�ÿ1=2 �7�

~Tmm,th � 1

2
� ~kf0�ÿ1=2 �8�

Note that when the tip spacing S0 is zero and f0 is
®xed, there is only one degree of freedom in the geo-
metric optimization of the elemental volume: the over-

all shape H0/L0. Table 2 shows a comparison between
(i) the optimized shape and twice-minimized peak tem-
perature of the ®nite-S0 con®guration of Fig. 1, and
(ii) the optimized ratio H0:L0 and once-minimized

peak temperature of the S0=0 con®guration of Ref.
[1]. The ratios (H0:L0)opt:(H0:L0)opt,th and TÄmm:TÄmm,th

deviate by no more than 23% from the value 1. This

means that the asymptotic solution of Ref. [1] can be
used as a rough estimate of the best design and per-
formance that can be achieved by optimizing the con-

®guration of Fig. 1, which is more complicated than
the con®guration of Ref. [1]. Eq. (7) can also be used
as a starting point in the numerical search for the opti-

mal shape parameters (H0/L0, D0/B0) of Fig. 1.
The other practical message of the ratio TÄmm:TÄmm,th

listed in Table 2 is the bene®t that can be expected
from using the ®nite-S0 geometry of Fig. 1, relative to

the S0=0 geometry of Ref. [1]. The relative reduction
in the minimized volume-to-point resistance (or TÄmm)
can be of order 20% or greater. The payo� is larger

when the product kÄf0 is smaller, i.e., in the (kÄ, f0)
range where the analytical solution [1] is not valid. In
conclusion, the numerical optimization of the geometry

becomes a necessity when the product kÄf0 is of order
1 or smaller.
The approximate agreement between the numerical

value (H0/L0)opt and the analytical result for (H0/

L0)opt,th, Eq. (7), shows us an interesting way to antici-
pate the numerical results for the internal optimal
shape parameter, (D0/B0), or the optimal spacing S0.

We reason as follows. The tip of the kp insert (Fig. 1)
acts as heat sink for two heat generating areas of con-

Table 1

Comparison between the hot-spot temperature results calcu-

lated with the ®nite-elements and ®nite-di�erences codes

(f0=0.1, H0/L0=1, D0/B0=0.15)

kÄ FE FD

1000 0.128236 0.128979

300 0.135924 0.135408

100 0.157219 0.152994

30 0.224812 0.218397

10 0.374893 0.375390

Table 2

Numerical results for the optimized geometry of the elemental volume of Fig. 1

f0 kÄ �H0

L0
�opt �D0

B0
�opt TÄmm

�H0=L0�opt

�H0=L0�opt,th

~T mm

~T mm,th
2(kÄf0)

1/2(S0/H0)opt

0.1 30 1.082 0.150 0.2230 0.94 0.77 0.48

0.1 100 0.664 0.074 0.1375 1.05 0.87 0.50

0.1 300 0.384 0.040 0.0838 1.05 0.92 0.56

0.03 300 0.624 0.020 0.1493 0.94 0.89 0.31

0.01 300 1.024 0.013 0.2364 0.89 0.82 0.37

M. Almogbel, A. Bejan / Int. J. Heat Mass Transfer 42 (1999) 3739±3756 3743



F
ig
.
2
.
T
h
e
o
p
ti
m
iz
ed

g
eo
m
et
ry

o
f
th
e
el
em

en
ta
l
co
n
d
u
ct
io
n
sy
st
em

,
a
n
d
th
e
co
rr
es
p
o
n
d
in
g
p
a
tt
er
n
s
o
f
is
o
th
er
m
s.

M. Almogbel, A. Bejan / Int. J. Heat Mass Transfer 42 (1999) 3739±37563744



ductivity k0 and size S0� (H0/2), in the same sense that
the root point (L0, 0) acts as heat sink for two heat

generating areas of conductivity k0 and size (H0/2) �
L0. Consequently, we expect the following proportion-
ality between the optimized aspect ratios of the re-

spective k0 domains,

2

�
S0

H0

�
opt

01

2

�
H0

L0

�
opt,th

�9�

which in view of Eq. (7) means that the group (2kÄf0)
1/2

(S0/H0)opt should be a number of order 1. The last
column in Table 2 con®rms the constancy of this order
of magnitude, where the value of the calculated group

is more closely approximated by 0.5.

4. Elemental system with ®xed external shape

An important problem that was side-stepped entirely
in Ref. [1] is the minimization of the volume-to-point

¯ow resistance in situations where the shape of the
given volume is ®xed. In the ¯uid-¯ow illustration that
is provided by the air passages of the human lung, the

®xed shape of the total volume is the shape of the
chest cavity. In the con®guration of Fig. 1, the pro-
blem consists of determining only the optimal shape

(or depth of penetration B0) of the high-conductivity
insert. The numerical optimization procedure is simpler
than in sections 2 and 3, because this time there is
only one degree of freedom: the ratio D0:B0, or the tip

spacing ratio S0:H0.
Table 3 shows the optimal internal geometry of an

elemental volume shaped as a square (H0/L0=1). The

once-minimized peak temperature is indicated by
TÄm=TÄpeak,min. The slenderness ratio (D0:B0)opt
decreases monotonically as kÄ increases and as f0

decreases. The optimal tip spacing continues to obey
the order of magnitude expression derived based on
Eq. (9).

A geometry related to that of Fig. 1 is the elemental
volume with round cross-section which is cooled by a

blade insert of length B0 and thickness D0 (Fig. 3,
top). In this geometry the hot spot occurs at two
points on the insulated circular perimeter, and moves

as the shape of the internal blade changes. The internal
aspect ratio D0:B0 can be optimized such that the hot-
spot temperature is minimum. The results are shown in

the lower part of Fig. 3. The trends and orders of mag-
nitude are similar to those determined for the square
volume with the same external dimension H0. One

peculiarity of the results for the circular cross-section
are the minima exhibited by both (D0/B0)opt and
TÄpeak,min with respect to the conductivity ratio kÄ.

5. Optimal ®rst-assembly geometry

It was shown in Ref. [1] that additional reductions
in global thermal resistance can be achieved in a

sequence of steps in which the complexity of the high-
conductivity paths increases, and where the geometric
con®guration is optimized at every step. The ®rst step
in this direction is shown in the upper part of Fig. 4.

The high-conductivity inserts form a tree that may be
viewed as an assembly of an even number of elemental
volumes, n1=A1/A0. The overall size A1=H1L1 is

®xed, and so is the volume fraction occupied by kp ma-
terial, f1=Ap1/A1, where Ap1 is the shaded area. The
D0 blades of the n1 elements serve as tributaries to a

central stem of thickness D1. The tips of all the blades
are surrounded by heat-generating k0 material.
The ®rst-assembly con®guration has four degrees of

freedom, which are represented by the dimensionless
numbers n1, H1/L1, D1/D0 and S0/D0. The S1 spacing
at the tip of the D1-thick blade can be calculated later
by noting that H0=L1/(n1/2) and S1=(H0 ÿ D0)/2.

Similarly, the B0 length of the D0-thick blades follows
from L0=H1/2 and B0=L0 ÿ S0. The combination of
k0 and kp materials in each design is represented by

the dimensionless parameters kÄ and f1, which were
held ®xed during each act of geometric optimization.
The numerical work was based on the same formal-

ism as in section 2, except that f1, L1 and A1 replace
f0, L0 and A0 in Eqs. (2) and (3). The optimization
was performed with respect to the four degrees of free-
dom. The search for the optimum was organized in

nested optimization loopsÐone loop for each degree
of freedom. The peak dimensionless temperature exhib-
ited minima with respect to H1/L1, D1/D0 and S0/D0,

but not with respect to n1. This feature distinguishes
the present `inward' design from the constructal
approach described in Ref. [1]: when the aspect ratio

H0/L0 optimized at the elemental level is carried over
(preserved, memorized) at the ®rst-assembly level,
there is an optimal number of elements n1. In general,

Table 3

The optimized internal geometry of an elemental volume

shaped as a square

f0 kÄ (D0/B0)opt TÄm 2(kÄf0)
1/2(S0/H0)opt

0.1 10 0.230 0.364 0.72

0.1 25 0.145 0.242 0.54

0.1 100 0.118 0.150 0.49

0.1 250 0.113 0.128 0.57

0.1 550 0.110 0.119 0.70

0.05 300 0.055 0.145 0.36

0.1 300 0.110 0.125 0.51

0.2 300 0.230 0.105 1.04

0.3 300 0.355 0.089 1.54
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the optimized inward design should have an overall re-
sistance that is lower than in the constructal case,

because the inward optimization is less constrained.

We discuss the relative merits of the two approaches in
section 8.

The lower part of Fig. 4 is a scale drawing that

Fig. 3. The optimized internal geometry of an elemental volume shaped as a disk.
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shows how the geometry optimized in this study

responds when the number of elements n1 increases.

The external shape becomes less slender, and the peak

temperature (minimized three times) decreases mono-

tonically. The numerical values listed under each draw-

ing show that the rate of decrease in TÄpeak,min decreases

Fig. 4. First-assembly con®guration with spacings at the tips of the high-conductivity insert, and the optimized geometry and per-

formance when the complexity (n1) increases (kÄ=300, f1=0.05).
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as well, meaning that a point of diminishing returns is
reached in this sequence of trading increased complex-

ity in design for decreased overall resistance.

The relevant design question is how to select the

external and internal dimensions of the con®guration

of Fig. 4 when the material parameters kÄ and f1 are

speci®ed. This information is provided in Figs. 5 and 6

for designs with n1=6, because this is when the ®rst-
assembly structure is su�ciently complex to exhibit an

overall resistance that is comparable with that of de-

signs with larger n1 values (see Fig. 7 later in this sec-

tion).

Fig. 5 shows how the optimized design changes

when the amount of high-conductivity material (f1)

increases. The external shape (H1/L1)opt and the in-

ternal ratio (D1:D0)opt are relatively insensitive to f1 in
the documented range 0.03 R f1 R 0.3, and perhaps

even outside this range. The optimal tip spacing S0

decreases as f1 increases: we plotted this result as the
group 2(kÄf1)

1/2(S0/H0)opt, where H0=L1/(n1/2). The
constancy of this group con®rms once more the scaling
argument that led to Eq. (9) and the rightmost col-

umns of Tables 2 and 3. Finally, the minimized global
resistance decreases as fÿ1=21 , which is why the group
(kÄf1)

1/2 TÄpeak,min plotted on the ordinate depends only

weakly on f1. All these trends are emphasized by Fig.
6, which shows how the optimized design responds to
changes in the conductivity ratio kÄ.

6. First assembly with ®xed external shape

Another design problem is the optimization of the

conductive path of the ®rst-assembly type in a space
with constrained shape. This possibility was explored
at the elemental level in a square domain (Table 3)

Fig. 5. The optimized ®rst-assembly design as a function of the amount of high-conductivity material (n1=6, kÄ=300).
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and a round domain (Fig. 3). In Fig. 7 we show the

optimized ®rst-assembly geometry for a (k0, kp) com-

posite material with kÄ=300 and f1=0.05, which must
®t in a square space. The upper images have been

drawn to scale, and should be compared with the cor-

responding sequence shown in Fig. 4 (bottom) for the

volume with unconstrained external shape. Note the

similar tip spacings and kp-blade thicknesses.

The minimized global resistance is indicated by H1/

L1=1 in the lower part of Fig. 7. The lack of freedom

in choosing the external shape is felt as an increase of

the order of 20% in the global resistance. Fig. 7 also

shows the point of diminishing returns that is reached
when the internal complexity of the design increases:

the optimized n1=6 design is almost as good as the

optimized n1=16 design. This conclusion holds for

both designs, constrained external shape (H1/L1=1)

and unconstrained optimized shape, (H1/L1)opt.

7. Optimal second-assembly geometry

The next step in the direction of increasing internal

complexity is the second assembly shown in Fig. 8.

The second assembly has the total size A2=H2L2, and

contains n2 ®rst assemblies, n2=A2/A1. Fig. 8 was

drawn for n2=2. The heat currents collected by the

®rst assemblies are channeled into a single new central

blade of thickness D2. The geometry of the second

assembly depends on six dimensionless parameters: D2/

D0, D1/D0, n2, n1, D0/B0 and H2/L2. The optimization

was subjected to only two constraints, the total size

A2, and the fraction occupied by the high conductivity

material, f2=Ap2/A2. In other words, the optimization

procedure is based on the largest number of degrees of

freedom, as the optimized shapes determined at the el-

emental and ®rst-assembly levels are not preserved at

the second-assembly level. The design progresses

Fig. 6. The optimized ®rst-assembly design as a function of the ratio of thermal conductivities (n1=6, f1=0.05).
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inward, by increasing the complexity of the same sys-
tem (the same overall size) that was optimized as an el-

ement or as a ®rst assembly. For the numerical work
we used the method of section 2, with f2, L2 and A2 in

place of f0, L0 and A0 in Eqs. (2) and (3).

In the ®rst phase of the numerical work we selected
f2=0.1 and kÄ=300, and ®xed three of the geometric

parameters: D2/D0=10, D1/D0=5 and n2=2. We mini-

mized the peak dimensionless temperature, ®rst, with
respect to D0/B0, and then with respect to the external

shape H2/L2. The results of this double optimization
are presented in Fig. 9 as functions of the remaining

parameter, n1. The twice-minimized overall resistance
of the second assembly (TÄpeak,mm) has a relatively shal-

low minimum with respect to n1: the optimal number
of elemental volumes in each ®rst assembly is in the

vicinity of n1=8. The bottom part of Fig. 9 shows the

corresponding tip spacings that characterize the opti-
mized second assembly, and how they vary with n1.

In the second phase of the optimization we ®xed

n1=8, because the e�ect of n1 on the optimized per-
formance is weak, provided n1 is of the same order of

magnitude as the optimal value. We then repeated the
procedure of Fig. 9 for many other combinations of

D2/D0 and D1/D0. The results are summarized in Fig.
10, again, for n2=2. Read from top to bottom, Fig. 10

shows the actual sequence in which we conducted the
optimization. We ®rst minimized TÄpeak with respect to

D0/B0, and produced the TÄpeak,m function shown in the

top frame of Fig. 10. This function was minimized
next with respect to D2/D0 in the top frame, and with

respect to D1/D0 in the middle frame. Finally, the
twice-minimized overall resistance TÄpeak,mm was mini-

mized with respect to the external shape H2/L2 in the
bottom frame. The results of this triple minimization

are TÄpeak,mmm=0.0353, (D2/D0)opt=24.6, (D1/

D0)opt=8.03 and (H2/L2)opt=1.784. The optimized
geometry and temperature ®eld are presented to scale

in Fig. 11 (left side).
Fig. 12 shows the other details of the geometry opti-

mized in the sequence of Fig. 10. They show that the

optimized design is sensitive to the ®nal changes made
in the selection of H2/L2. Fig. 12 is a continuation of

the bottom frame of Fig. 10, which showed the sensi-
tivity of the overall resistance to changes in H2/L2.

The remaining e�ect to document is that of the

number of constituents in the second construct, n2. We
repeated the entire optimization sequence of Figs. 9±12

Fig. 7. The optimized ®rst-assembly design when the external shape is constrained to a square (kÄ=300, f1=0.05).
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for n2=4, and the resulting optimized architecture is

shown on the right side of Fig. 11. At the end of the

®rst phase of this optimization (in the equivalent of

Fig. 9) we found that the optimal number of elemental

systems in each ®rst construct is n1=8. We continued

the optimization in the second phase by setting n1=8,

and executed the steps that correspond to the three

frames of Fig. 10. The ®nal, optimized geometry (Fig.

11, right side) is characterized by TÄpeak,mmm=0.0319,
(D2/D0)opt=40.4, (D1/D0)opt=9.79 and (H2/

L2)opt=1.724. Noteworthy in the color display is the

sharp temperature gradient in the thin space (2 S0)

between the tips of two in-line elemental blades of

thickness D0. Although not very visible on the right

side of Fig. 11, the tips of the elemental blades do not

touch.

So far, the e�ect of increasing n2 from 2 to 4 is to
decrease the overall resistance TÄpeak,mmm by 10%,

while leaving the external shape (H2/L2)opt practically
unchanged. Will these trends continue at even higher
n2 values? To answer this question we repeated the

entire procedure of Figs. 9±12 for n2=6 and n2=8.
The graphic details of this numerical work are omitted
for brevity. The two main features of the optimized de-

sign are summarized in Fig. 13. Each design was opti-
mized with respect to D0/B0, D2/D0, D1/D0 and H2/L2.
We see that the overall resistance TÄpeak,mmmm decreases

gradually as n2 increases, and that the rate of decrease
slows down. The external aspect ratio (H2/L2)opt is
almost insensitive to the increase in internal complex-
ity. These trends agree qualitatively with what we

learned from the inward optimization of the ®rst
assembly, speci®cally, Figs. 4 and 7. Most important is
the absence of an optimal number of constituents (n2)

in the second assembly, which is contrary to the result
found when the construction proceeds `outward', i.e.,
where the optimized shape determined at the ®rst-

assembly level is retained at the second-assembly level
[1].
The constancy of the external aspect ratio is import-

ant because it shows that some geometric features are
robust: they are `best' for many tree paths. More com-
plex internal structures, however, will always be better
than less complex structures. Performance increases

(resistance decreases) as we moveÐin timeÐfrom the
simplest internal structure (one blade, Fig. 1) to a
more complex one (e.g., Fig. 8) in a system that has

the same total volume. This is why nature `makes'
increasingly complex internal structures, even though
the rate of improvement in performance decreases.

8. Conclusions

There are several basic aspects that have been
brought to light in this study, and deserve to be

emphasized. First the global performance of the opti-
mized system improves as the internal complexity
increases. To illustrate this trend, consider a system

(A ) with kÄ=300 and f=Ap/A=0.1 optimized as an el-
emental system, ®rst assembly, and second assembly.
The results developed in this paper show that the glo-
bal resistance of the optimized designs, [(TpeakÿTsink)/

(q1A/k0)]min, decreases in this sequence: 0.0838, 0.0573
and 0.0304. Improvements are registered when the de-
sign becomes more complex, provided that all the geo-

metric aspect ratios (internal and external) are
optimized, and that the basic shape of the volume-to-
point ¯ow path is the tree.

These improvements become less and less dramatic
as the complexity increases. From an engineering
standpoint this means that there comes a point where

Fig. 8. Second-assembly con®guration containing two ®rst

assemblies.
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further increases in complexity are not justi®ed by the

increases in the costs associated with executing (e.g.,

manufacturing) the device. This is why summaries such

as Figs. 7 and 13 are important, and why the optimal

numbers of constituents produced by the `outward'

approach [1] can be used as rough estimates of the

numbers of constituents (n1, n2, . . . ) that may prove to

be adequate. For example, for a ®rst-assembly struc-

ture with kÄ=300 and f1=0.1, the results of Ref. [1]

recommend n1,opt=4, which is comparable with the n1
value where the substantial drop in TÄpeak,min has

already been achieved.

Another important aspect is that every time we give

the design more degrees of freedom, and we optimize

it in these additional directions, the global performance

of the optimized structure improves. In this paper we

explored two new ways of introducing degrees of free-

dom in the optimization. One was the decision that in

each new assembly the shapes of the previous (smaller)

assemblies are free to be optimized once more. The

other was the decision to provide spacings (k0 ma-

terial) beyond the tips of all the high-conductivity

blades, and to optimize these spacings. Further

improvements can be sought by optimizing the angle

between each central kp blade and its tributaries, and

by optimizing the manner in which the thickness of

each kp blade varies with longitudinal position: these

directions have been explored in Ref. [9], which

showed that the relative improvements in global per-

formance are of the order of 5%, i.e., less than the

improvements brought by the tip spacings optimized in

this paper (see the discussion under eq. (8)).

Finally, when the structure is complex (e.g., second

assembly) and already has the shape of a tree with geo-

metric aspect ratios close to the optimal values, the

minima with respect to the various degrees of freedom

are relatively shallow. This means that a multitude of

designs that do not look exactly like the optimal struc-

ture perform essentially at the same high level as the

optimal structure. The conclusion is that the near-opti-

Fig. 9. The optimization of the second assembly with respect to the ®rst three degrees of freedom, D0/B0, H2/L2 and n1.
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mal tree structures represent a robust design: minor

changes in internal and external shapes have almost no

e�ect on the global performance of the design. We also

found that certain optimized geometrical features are

relatively invariant from one design to the next. Note,

for example, the external aspect ratio of the second-

assembly structure (Fig. 13). Such invariants may be

relied upon when seeking to simplify the numerical

work by reducing the degrees of freedom in the opti-

mization procedure.

The readers interested in the applications of con-

structal theory to predicting the geometry of natural

¯ow systems are directed to the 1997 review [7], and to

more recent extensions: BeÂ nard convection in clear

Fig. 10. The optimization of the second assembly with respect to the four geometric aspect ratios D0:B0, D2:D0, D1:D0, H2:L2).
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¯uids and ¯uid-saturated porous media [10], lightning,
or the time-dependent discharge of a volume to one

point sink [11], patterns of cracks in volumetrically
shrinking solids [12], river drainage basins [13], three-

dimensional trees [14], and street patterns and urban
growth [15].
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